Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas.
نویسندگان
چکیده
Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems.
منابع مشابه
A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins.
The Arabidopsis CAO gene encodes a 52-kDa protein with predicted localization in the plastid compartment. Here, we report that CAO is an intrinsic Rieske iron-sulfur protein of the plastid-envelope inner and thylakoid membranes. Activity measurements revealed that CAO catalyzes chlorophyllide a to chlorophyllide b conversion in vitro and that the enzyme was only slightly active with protochloro...
متن کاملPigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis.
The organization of pigment molecules in photosystems is strictly determined. The peripheral antennae have both chlorophyll a and b, but the core antennae consist of only chlorophyll a in green plants. Furthermore, according to the recent model obtained from the crystal structure of light-harvesting chlorophyll a/b-protein complexes II (LHCII), individual chlorophyll-binding sites are occupied ...
متن کاملFunctional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase.
Higher plants acclimate to various light environments by changing the antenna size of a light-harvesting photosystem. The antenna size of a photosystem is partly determined by the amount of chlorophyll b in the light-harvesting complexes. Chlorophyllide a oxygenase (CAO) converts chlorophyll a to chlorophyll b in a two-step oxygenation reaction. In our previous study, we demonstrated that the c...
متن کاملLight intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco.
Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of...
متن کاملModulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase (CAO) in Tobacco
Chlorophyll (Chl) b is synthesized by oxidation of a methyl group on the B ring of the porphyrin molecule to a formyl group by chlorophyllide (Chlide) a oxygenase (CAO). The overexpression of Arabidopsis thaliana full length CAO (AtCAO) in tobacco (Nicotiana tabacum) resulted in an increased Chl synthesis and a decreased Chl a/b ratio in low-light-grown (LL) as well as in high-light-grown (HL) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 27 شماره
صفحات -
تاریخ انتشار 2013